Math 221: LINEAR ALGEBRA

Chapter 4. Vector Geometry §4-3. More on the Cross Product

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on 03/01/2021)

More on the Cross Product

NOTE: Much of this chapter is what you would learn in Multivariable Calculus.
You might find it interesting/useful to read.
But I will only cover the material important to this course.

Theorem
Given three vectors $\overrightarrow{\mathrm{u}}=\left[\begin{array}{l}\mathrm{x}_{0} \\ \mathrm{y}_{0} \\ \mathrm{z}_{0}\end{array}\right], \overrightarrow{\mathrm{v}}=\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{y}_{1} \\ \mathrm{z}_{1}\end{array}\right]$, and $\overrightarrow{\mathrm{w}}=\left[\begin{array}{l}\mathrm{x}_{2} \\ \mathrm{y}_{2} \\ \mathrm{z}_{2}\end{array}\right]$, it holds that

$$
\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})=\operatorname{det}\left[\begin{array}{ccc}
\overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}}
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
\mathrm{x}_{0} & \mathrm{x}_{1} & \mathrm{x}_{2} \\
\mathrm{y}_{0} & \mathrm{y}_{1} & \mathrm{y}_{2} \\
\mathrm{z}_{0} & \mathrm{z}_{1} & \mathrm{z}_{2}
\end{array}\right] .
$$

Proof.

$$
\text { Let } \begin{aligned}
\overrightarrow{\mathrm{u}}=\left[\begin{array}{l}
\mathrm{x}_{0} \\
\mathrm{y}_{0} \\
\mathrm{z}_{0}
\end{array}\right] & , \overrightarrow{\mathrm{v}}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{y}_{1} \\
\mathrm{z}_{1}
\end{array}\right], \text { and } \overrightarrow{\mathrm{w}}=\left[\begin{array}{l}
\mathrm{x}_{2} \\
\mathrm{y}_{2} \\
\mathrm{z}_{2}
\end{array}\right] \text {. Then } \\
\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}) & =\left[\begin{array}{c}
\mathrm{x}_{0} \\
\mathrm{y}_{0} \\
\mathrm{z}_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathrm{y}_{1} \mathrm{z}_{2}-\mathrm{z}_{1} \mathrm{y}_{2} \\
-\left(\mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{z}_{1} \mathrm{x}_{2}\right) \\
\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{y}_{1} \mathrm{x}_{2}
\end{array}\right] \\
& =\mathrm{x}_{0}\left(\mathrm{y}_{1} \mathrm{z}_{2}-\mathrm{z}_{1} \mathrm{y}_{2}\right)-\mathrm{y}_{0}\left(\mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{z}_{1} \mathrm{x}_{2}\right)+\mathrm{z}_{0}\left(\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{y}_{1} \mathrm{x}_{2}\right) \\
& =\mathrm{x}_{0}\left|\begin{array}{ll}
\mathrm{y}_{1} & \mathrm{y}_{2} \\
\mathrm{z}_{1} & \mathrm{z}_{2}
\end{array}\right|-\mathrm{y}_{0}\left|\begin{array}{ll}
\mathrm{x}_{1} & \mathrm{x}_{2} \\
\mathrm{z}_{1} & \mathrm{z}_{2}
\end{array}\right|+\mathrm{z}_{0}\left|\begin{array}{ll}
\mathrm{y}_{1} & \mathrm{y}_{2} \\
\mathrm{z}_{1} & \mathrm{z}_{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
\mathrm{x}_{0} & \mathrm{x}_{1} & \mathrm{x}_{2} \\
\mathrm{y}_{0} & \mathrm{y}_{1} & \mathrm{y}_{2} \\
\mathrm{z}_{0} & \mathrm{z}_{1} & \mathrm{z}_{2}
\end{array}\right| .
\end{aligned}
$$

Theorem (Properties of the Cross Product)

Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ be in \mathbb{R}^{3}.

1. $\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}$ is a vector.
2. $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
3. $\overrightarrow{\mathrm{u}} \times \overrightarrow{0}=\overrightarrow{0}$ and $\overrightarrow{0} \times \overrightarrow{\mathrm{u}}=\overrightarrow{0}$.
4. $\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{u}}=\overrightarrow{0}$.
5. $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$.
6. $(k \vec{u}) \times \vec{v}=k(\vec{u} \times \vec{v})=\vec{u} \times(k \vec{v})$ for any scalar k.
7. $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$.
8. $(\vec{v}+\vec{w}) \times \vec{u}=\vec{v} \times \vec{u}+\vec{w} \times \vec{u}$.

Theorem (The Lagrange Identity)
If $\vec{u}, \vec{v} \in \mathbb{R}^{3}$, then

$$
\|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}\|^{2}=\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2}-(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})^{2} .
$$

Proof.
Write $\overrightarrow{\mathrm{u}}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $\overrightarrow{\mathrm{v}}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$, then both sides are equal to

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right)^{2}+\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2} .
$$

Work out these by yourself!

As a consequence of the Lagrange Identity and the fact that

$$
\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}=\|\overrightarrow{\mathrm{u}}\|\|\overrightarrow{\mathrm{v}}\| \cos \theta
$$

we have

$$
\begin{aligned}
\|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}\|^{2} & =\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2}-(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})^{2} \\
& =\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2}-\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2} \cos ^{2} \theta \\
& =\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2} \sin ^{2} \theta
\end{aligned}
$$

Taking square roots on both sides yields,

$$
\|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}\|=\|\overrightarrow{\mathrm{u}}\|\|\overrightarrow{\mathrm{v}}\| \sin \theta
$$

Note that since $0 \leq \theta \leq \pi, \sin \theta \geq 0$.
If $\theta=0$ or $\theta=\pi$, then $\sin \theta=0$, and $\|\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}\|=0$. This is consistent with our earlier observation that if $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are parallel, then $\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\overrightarrow{0}$.

Theorem

Let $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ be nonzero vectors in \mathbb{R}^{3}, and let θ denote the angle between $\overrightarrow{\mathrm{u}}$ and \vec{v}.

1. $\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$, and is the area of the parallelogram defined by \vec{u} and \vec{v}.
2. $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are parallel if and only if $\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\overrightarrow{0}$.

Proof. (area of parallelogram)
The area of the parallelogram defined by \vec{u} and \vec{v} is $\|\overrightarrow{\mathrm{u}}\| \mathrm{h}$, where h is the height of the parallelogram.

Since $\sin \theta=\frac{\mathrm{h}}{\|\overrightarrow{\mathrm{v}}\|}$, we see that $\mathrm{h}=\|\overrightarrow{\mathrm{v}}\| \sin \theta$. Therefore, the area is

$$
\|\vec{u}\|\|\vec{v}\| \sin \theta
$$

Theorem

The volume of the parallelepiped determined by the three vectors $\overrightarrow{\mathrm{b}}$, $\overrightarrow{\mathrm{c}}$, and \vec{a} in \mathbb{R}^{3} is

$$
|\vec{a} \cdot(\vec{b} \times \vec{c})| .
$$

Proof.
Volume $=$ base area $\times \mathrm{h}$, where base area $=|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|$ and the height $\mathrm{h}=|\overrightarrow{\mathrm{a}}||\cos (\alpha)|$. Hence,

$$
\text { Vol }=|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}||\overrightarrow{\mathrm{a}}||\cos (\alpha)|=|(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}) \cdot \overrightarrow{\mathrm{a}}| .
$$

Problem

Find the area of the triangle having vertices $\mathrm{A}(3,-1,2), \mathrm{B}(1,1,0)$ and $\mathrm{C}(1,2,-1)$.

Solution
The area of the triangle is half the area of the parallelogram defined by $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AB}}=\left[\begin{array}{r}-2 \\ 2 \\ -2\end{array}\right]$ and $\overrightarrow{\mathrm{AC}}=\left[\begin{array}{r}-2 \\ 3 \\ -3\end{array}\right]$. Therefore

$$
\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left[\begin{array}{r}
0 \\
-2 \\
-2
\end{array}\right]
$$

so the area of the triangle is $\frac{1}{2}\|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}\|=\sqrt{2}$.

Problem

Find the volume of the parallelepiped determined by the vectors
$\overrightarrow{\mathrm{u}}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], \overrightarrow{\mathrm{v}}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\overrightarrow{\mathrm{w}}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$.

Solution
The volume of the parallelepiped is

$$
|\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})|=\left|\operatorname{det}\left[\begin{array}{rrr}
2 & 1 & 2 \\
1 & 0 & 1 \\
1 & 2 & -1
\end{array}\right]\right|=2 .
$$

